Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547145

RESUMO

Epidemic data are often difficult to interpret due to inconsistent detection and reporting. As these data are critically relied upon to inform policy and epidemic projections, understanding reporting trends is similarly important. Early reporting of the COVID-19 pandemic in particular is complicated, due to changing diagnostic and testing protocols. An internal audit by the State of Florida, USA found numerous specific examples of irregularities in COVID-19 case and death reports. Using case, hospitalization, and death data from the the first year of the COVID-19 pandemic in Florida, we present approaches that can be used to identify the timing, direction, and magnitude of some reporting changes. Specifically, by establishing a baseline of detection probabilities from the first (spring) wave, we show that transmission trends among all age groups were similar, with the exception of the second summer wave, when younger people became infected earlier than seniors, by approximately 2 weeks. We also found a substantial drop in case-fatality risk (CFR) among all age groups over the three waves during the first year of the pandemic, with the most drastic changes seen in the 0 to 39 age group. The CFR trends provide useful insights into infection detection that would not be possible by relying on the number of tests alone. During the third wave, for which we have reliable hospitalization data, the CFR was remarkably stable across all age groups. In contrast, the hospitalization-to-case ratio varied inversely with cases while the death-to-hospitalization ratio varied proportionally. Although specific trends are likely to vary between locales, the approaches we present here offer a generic way to understand the substantial changes that occurred in the relationships among the key epidemic indicators.


Assuntos
COVID-19 , Humanos , Recém-Nascido , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Florida/epidemiologia , Pandemias , Hospitalização
2.
medRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461674

RESUMO

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.

3.
BMC Infect Dis ; 23(1): 287, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142984

RESUMO

BACKGROUND: Decision-makers impose COVID-19 mitigations based on public health indicators such as reported cases, which are sensitive to fluctuations in supply and demand for diagnostic testing, and hospital admissions, which lag infections by up to two weeks. Imposing mitigations too early has unnecessary economic costs while imposing too late leads to uncontrolled epidemics with unnecessary cases and deaths. Sentinel surveillance of recently-symptomatic individuals in outpatient testing sites may overcome biases and lags in conventional indicators, but the minimal outpatient sentinel surveillance system needed for reliable trend estimation remains unknown. METHODS: We used a stochastic, compartmental transmission model to evaluate the performance of various surveillance indicators at reliably triggering an alarm in response to, but not before, a step increase in transmission of SARS-CoV-2. The surveillance indicators included hospital admissions, hospital occupancy, and sentinel cases with varying levels of sampling effort capturing 5, 10, 20, 50, or 100% of incident mild cases. We tested 3 levels of transmission increase, 3 population sizes, and conditions of either simultaneous transmission increase or lagged increase in the older population. We compared the indicators' performance at triggering alarm soon after, but not prior, to the transmission increase. RESULTS: Compared to surveillance based on hospital admissions, outpatient sentinel surveillance that captured at least 20% of incident mild cases could trigger an alarm 2 to 5 days earlier for a mild increase in transmission and 6 days earlier for a moderate or strong increase. Sentinel surveillance triggered fewer false alarms and averted more deaths per day spent in mitigation. When transmission increase in older populations lagged the increase in younger populations by 14 days, sentinel surveillance extended its lead time over hospital admissions by an additional 2 days. CONCLUSIONS: Sentinel surveillance of mild symptomatic cases can provide more timely and reliable information on changes in transmission to inform decision-makers in an epidemic like COVID-19.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/epidemiologia , SARS-CoV-2 , Vigilância de Evento Sentinela , Pacientes Ambulatoriais , Saúde Pública
4.
Malar J ; 22(1): 133, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095480

RESUMO

BACKGROUND: A recent WHO recommendation for perennial malaria chemoprevention (PMC) encourages countries to adapt dose timing and number to local conditions. However, knowledge gaps on the epidemiological impact of PMC and possible combination with the malaria vaccine RTS,S hinder informed policy decisions in countries where malaria burden in young children remains high. METHODS: The EMOD malaria model was used to predict the impact of PMC with and without RTS,S on clinical and severe malaria cases in children under the age of two years (U2). PMC and RTS,S effect sizes were fit to trial data. PMC was simulated with three to seven doses (PMC-3-7) before the age of eighteen months and RTS,S with three doses, shown to be effective at nine months. Simulations were run for transmission intensities of one to 128 infectious bites per person per year, corresponding to incidences of < 1 to 5500 cases per 1000 population U2. Intervention coverage was either set to 80% or based on 2018 household survey data for Southern Nigeria as a sample use case. The protective efficacy (PE) for clinical and severe cases in children U2 was calculated in comparison to no PMC and no RTS,S. RESULTS: The projected impact of PMC or RTS,S was greater at moderate to high transmission than at low or very high transmission. Across the simulated transmission levels, PE estimates of PMC-3 at 80% coverage ranged from 5.7 to 8.8% for clinical, and from 6.1 to 13.6% for severe malaria (PE of RTS,S 10-32% and 24.6-27.5% for clinical and severe malaria, respectively. In children U2, PMC with seven doses nearly averted as many cases as RTS,S, while the combination of both was more impactful than either intervention alone. When operational coverage, as seen in Southern Nigeria, increased to a hypothetical target of 80%, cases were reduced beyond the relative increase in coverage. CONCLUSIONS: PMC can substantially reduce clinical and severe cases in the first two years of life in areas with high malaria burden and perennial transmission. A better understanding of the malaria risk profile by age in early childhood and on feasible coverage by age, is needed for selecting an appropriate PMC schedule in a given setting.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Criança , Pré-Escolar , Lactente , Malária/prevenção & controle , Nigéria , Quimioprevenção , Vacinação , Malária Falciparum/epidemiologia
5.
medRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945423

RESUMO

We evaluate approaches to vaccine distribution using an agent-based model of human activity and COVID-19 transmission calibrated to detailed trends in cases, hospitalizations, deaths, seroprevalence, and vaccine breakthrough infections in Florida, USA. We compare the incremental effectiveness for four different distribution strategies at four different levels of vaccine availability, reflecting different income settings' historical COVID-19 vaccine distribution. Our analysis indicates that the best strategy to reduce severe outcomes is to actively target high disease-risk individuals. This was true in every scenario, although the advantage was greatest for the middle-income-country availability assumptions, and relatively modest compared to a simple mass vaccination approach for rapid, high levels of vaccine availability. Ring vaccination, while generally the most effective strategy for reducing infections, ultimately proved least effective at preventing deaths. We also consider using age group as a practical, surrogate measure for actual disease-risk targeting; this approach still outperforms both simple mass distribution and ring vaccination. We also find that the magnitude of strategy effectiveness depends on when assessment occurs (e.g., after delta vs. after omicron variants). However, these differences in absolute benefit for the strategies do not change the ranking of their performance at preventing severe outcomes across vaccine availability assumptions.

6.
Malar J ; 20(1): 455, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861874

RESUMO

BACKGROUND: Access to healthcare is important in controlling malaria burden and, as a result, distance or travel time to health facilities is often a significant predictor in modelling malaria prevalence. Adding new health facilities may reduce overall travel time to health facilities and may decrease malaria transmission. To help guide local decision-makers as they scale up community-based accessibility, the influence of the spatial allocation of new health facilities on malaria prevalence is evaluated in Bunkpurugu-Yunyoo district in northern Ghana. A location-allocation analysis is performed to find optimal locations of new health facilities by separately minimizing three district-wide objectives: malaria prevalence, malaria incidence, and average travel time to health facilities. METHODS: Generalized additive models was used to estimate the relationship between malaria prevalence and travel time to the nearest health facility and other geospatial covariates. The model predictions are then used to calculate the optimisation criteria for the location-allocation analysis. This analysis was performed for two scenarios: adding new health facilities to the existing ones, and a hypothetical scenario in which the community-based healthcare facilities would be allocated anew. An interactive web application was created to facilitate efficient presentation of this analysis and allow users to experiment with their choice of health facility location and optimisation criteria. RESULTS: Using malaria prevalence and travel time as optimisation criteria, two locations that would benefit from new health facilities were identified, regardless of scenarios. Due to the non-linear relationship between malaria incidence and prevalence, the optimal locations chosen based on the incidence criterion tended to be inequitable and was different from those based on the other optimisation criteria. CONCLUSIONS: This study findings underscore the importance of using multiple optimisation criteria in the decision-making process. This analysis and the interactive application can be repurposed for other regions and criteria, bridging the gap between science, models and decisions.


Assuntos
Instalações de Saúde/estatística & dados numéricos , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Viagem/estatística & dados numéricos , Gana/epidemiologia , Instalações de Saúde/provisão & distribuição , Humanos , Incidência , Malária/epidemiologia , Prevalência , Análise Espacial
7.
Sci Total Environ ; 800: 149494, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391162

RESUMO

Riparian forests are ecotones that link aquatic and terrestrial habitats, providing ecosystem services including sediment control and nutrient regulation. Riparian forest function is intimately linked to river hydrology and floodplain dynamics, which can be severely altered by dams. The Tocantins River in the eastern Amazon has six mega-dams along its course. To understand the large-scale and cumulative impacts of multiple dams on the Tocantins floodplain, we quantified landscape-scale changes in floodplain extent, hydroperiod, and flood timing on a 145-km stretch of the river downstream of five dams. We used water level data from 1985 to 2019 to compare daily floodplain inundation dynamics before and after damming. We also developed models to examine the impacts of climate and land use change on hydrology of the Tocantins River. After installation of the first dam in 1998, an average of 82.3 km2 (63%) of the floodplain no longer flooded, overall average hydroperiod decreased by 15 days (11%), and flooding started an average of five days earlier. After all five dams were installed, 72% of the average pre-dam flooded area no longer flooded, average hydroperiod had decreased by 35%, and average inundation onset occurred 12 days later. These changes in floodplain hydrology appeared to be driven primarily by dam operations as we found no significant changes in precipitation over the study period. Increasing loss of natural vegetation in the watershed may play a role in changed hydrology but cannot explain the abrupt loss of floodplain extent after the first dam was installed. This is one of few studies to quantify dam-induced floodplain alteration at a landscape scale and to investigate impacts of multiple dams on a landscape. Our results indicate that the Tocantins River floodplain is undergoing drastic hydrologic alteration. The impacts of multiple dams are cumulative and non-linear, especially for hydroperiod and flood timing.


Assuntos
Ecossistema , Hidrologia , Inundações , Florestas , Rios
8.
Spat Spatiotemporal Epidemiol ; 36: 100394, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33509423

RESUMO

The most common approach to create spatial prediction of malaria in the literature is to approximate a Gaussian process model using stochastic partial differential equation (SPDE). We compared SPDE to computationally faster alternatives, generalized additive model (GAM) and state-of-the-art machine learning method gradient boosted trees (GBM), with respect to their predictive skill for country-level malaria prevalence mapping. We also evaluated the intuition that incorporation of past data and the use of spatio-temporal models may improve predictive accuracy of present spatial distribution of malaria. Model performances varied among the countries and setting with SPDE and GAM performed well generally. The inclusion of past data is beneficial for GAM and GBM, but not for SPDE. We further investigated the weaknesses of SPDE at spatio-temporal setting and GAM at the edges of the countries. Taken together, we believe that spatial/spatio-temporal SPDE models should be evaluated alongside with the alternatives or at least GAM.


Assuntos
Malária , Humanos , Malária/epidemiologia , Prevalência , Análise Espaço-Temporal
9.
BMC Med ; 18(1): 149, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32552743

RESUMO

BACKGROUND: Mass drug administration and mass-screen-and-treat interventions have been used to interrupt malaria transmission and reduce burden in sub-Saharan Africa. Determining which strategy will reduce costs is an important challenge for implementers; however, model-based simulations and field studies have yet to develop consensus guidelines. Moreover, there is often no way for decision-makers to directly interact with these data and/or models, incorporate local knowledge and expertise, and re-fit parameters to guide their specific goals. METHODS: We propose a general framework for comparing costs associated with mass drug administrations and mass screen and treat based on the possible outcomes of each intervention and the costs associated with each outcome. We then used publicly available data from six countries in western Africa to develop spatial-explicit probabilistic models to estimate intervention costs based on baseline malaria prevalence, diagnostic performance, and sociodemographic factors (age and urbanicity). In addition to comparing specific scenarios, we also develop interactive web applications which allow managers to select data sources and model parameters, and directly input their own cost values. RESULTS: The regional-level models revealed substantial spatial heterogeneity in malaria prevalence and diagnostic test sensitivity and specificity, indicating that a "one-size-fits-all" approach is unlikely to maximize resource allocation. For instance, urban communities in Burkina Faso typically had lower prevalence rates compared to rural communities (0.151 versus 0.383, respectively) as well as lower diagnostic sensitivity (0.699 versus 0.862, respectively); however, there was still substantial regional variation. Adjusting the cost associated with false negative diagnostic results to included additional costs, such as delayed treated and potential lost wages, undermined the overall costs associated with MSAT. CONCLUSIONS: The observed spatial variability and dependence on specified cost values support not only the need for location-specific intervention approaches but also the need to move beyond standard modeling approaches and towards interactive tools which allow implementers to engage directly with data and models. We believe that the framework demonstrated in this article will help connect modeling efforts and stakeholders in order to promote data-driven decision-making for the effective management of malaria, as well as other diseases.


Assuntos
Análise Custo-Benefício/métodos , Testes Diagnósticos de Rotina/economia , Malária/diagnóstico , Malária/economia , Administração Massiva de Medicamentos/economia , Testes Diagnósticos de Rotina/métodos , Humanos , Administração Massiva de Medicamentos/métodos
10.
Mar Pollut Bull ; 154: 111111, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319927

RESUMO

Predicting the bleaching responses of corals is crucial in light of frequent heat stress events to manage further losses of biodiversity and ecosystem functioning, especially for reefs impacted by urbanisation. We examined if the coral cover and community at various Singapore sites changed during the 2016 global coral bleaching event. Bleaching prevalence varied widely among sites in June 2016, and was best explained by site and coral species. While some sites were minimally impacted, others registered significant decreases in coral cover and community changes persisting till March 2017, when normal colouration was mostly regained by corals. Bleaching susceptibility was associated with larger corallites in hermaphrodites and smaller corallites in gonochores (probably due to the cost of maintaining dual sexual functions in hermaphrodites), and with increasing proximity between polyps (likely because thermal damage would be less contained among polyps with greater physiological integration). However, bleaching resilience-the capacity to regain baseline pigmentation-was poorly explained by the traits studied. Our findings suggest that the interplay between local conditions and species composition strongly affects bleaching outcomes on urbanised reefs, and underscore the utility of coral traits for predicting bleaching responses to help in formulating appropriate management strategies.


Assuntos
Antozoários , Animais , Biodiversidade , Recifes de Corais , Ecossistema , Singapura
11.
Proc Natl Acad Sci U S A ; 117(6): 3319-3325, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31974303

RESUMO

Viruses transmitted by Aedes mosquitoes, such as dengue, Zika, and chikungunya, have expanding ranges and seem unabated by current vector control programs. Effective control of these pathogens likely requires integrated approaches. We evaluated dengue management options in an endemic setting that combine novel vector control and vaccination using an agent-based model for Yucatán, Mexico, fit to 37 y of data. Our intervention models are informed by targeted indoor residual spraying (TIRS) experiments; trial outcomes and World Health Organization (WHO) testing guidance for the only licensed dengue vaccine, CYD-TDV; and preliminary results for in-development vaccines. We evaluated several implementation options, including varying coverage levels; staggered introductions; and a one-time, large-scale vaccination campaign. We found that CYD-TDV and TIRS interfere: while the combination outperforms either alone, performance is lower than estimated from their separate benefits. The conventional model hypothesized for in-development vaccines, however, performs synergistically with TIRS, amplifying effectiveness well beyond their independent impacts. If the preliminary performance by either of the in-development vaccines is upheld, a one-time, large-scale campaign followed by routine vaccination alongside aggressive new vector control could enable short-term elimination, with nearly all cases avoided for a decade despite continuous dengue reintroductions. If elimination is impracticable due to resource limitations, less ambitious implementations of this combination still produce amplified, longer-lasting effectiveness over single-approach interventions.


Assuntos
Vacinas contra Dengue , Dengue/prevenção & controle , Programas de Imunização , Modelos Biológicos , Controle de Mosquitos/métodos , Animais , Dengue/epidemiologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/uso terapêutico , Vírus da Dengue/imunologia , Humanos , México , Mosquitos Vetores
13.
PLoS One ; 11(7): e0159755, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27438593

RESUMO

Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera-Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Ecossistema , Aquecimento Global , Animais , Mudança Climática , Singapura , Temperatura
14.
PLoS One ; 9(6): e98529, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24896085

RESUMO

Size-dependent mortality influences the recolonization success of juvenile corals transplanted for reef restoration and assisting juvenile corals attain a refuge size would thus improve post-transplantation survivorship. To explore colony size augmentation strategies, recruits of the scleractinian coral Pocillopora damicornis were fed with live Artemia salina nauplii twice a week for 24 weeks in an ex situ coral nursery. Fed recruits grew significantly faster than unfed ones, with corals in the 3600, 1800, 600 and 0 (control) nauplii/L groups exhibiting volumetric growth rates of 10.65 ± 1.46, 4.69 ± 0.9, 3.64 ± 0.55 and 1.18 ± 0.37 mm3/week, respectively. Corals supplied with the highest density of nauplii increased their ecological volume by more than 74 times their initial size, achieving a mean final volume of 248.38 ± 33.44 mm3. The benefits of feeding were apparent even after transplantation to the reef. The corals in the 3600, 1800, 600 and 0 nauplii/L groups grew to final sizes of 4875 ± 260 mm3, 2036 ± 627 mm3, 1066 ± 70 mm3 and 512 ± 116 mm3, respectively. The fed corals had significantly higher survival rates than the unfed ones after transplantation (63%, 59%, 56% and 38% for the 3600, 1800, 600 and 0 nauplii/L treatments respectively). Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities. Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls. This study demonstrated that nutrition enhancement can augment coral growth and post-transplantation survival, and is a biologically and economically viable option that can be used to supplement existing coral mariculture procedures and enhance reef restoration outcomes.


Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Fenômenos Fisiológicos/fisiologia , Animais , Análise Custo-Benefício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA